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4. Let z, y, and z be positive real numbers such that z + y + z = 1. For
a positive integer n, let S,, = =™ + y™ + 2™. Also, let P = S5S5005 and
Q = S3S2004-

(a) Find the smallest possible value of Q.

(b) If z, y, and z are distinct, determine which of P or Q is the larger.

Solution by Arkady Alt, San Jose, CA, USA.

(a) By the Power Mean inequality, for any positive integer k we have
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where equality occurs if and only if £ = y = 2 = % Thus the minimum
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value of Q is 32 32008 — 32005°

(b) We will prove that if z, y, z are distinct, then
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holds for any positive integer n. Indeed,
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Therefore, Snt1 o SS’”I forn >m > 2,0r S, 18,11 > SmSn. In

particular for m = 3, n = 2004 we have S2S2005 > S3S2004-
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Next are solutions to the Hong Kong Team Selection Test 2, given at
[2009 : 214-215].

1. Let ABCD be a cyclic quadrilateral. Show that the orthocentres of
ANABC, ABCD, ACDA, and ADAB are the vertices of a quadrilateral



